COMP-532 Distributed Systems *Requires Programming Background

University of Nicosia, Cyprus

Course Code	Course Title	ECTS Credits
COMP-532	Distributed Systems	10
Department	Semester	Prerequisites
Computer Science	Fall/Spring/Summer	DFIN-511
Type of Course	Field	Language of Instruction
Elective	Computer Science	English
Level of Course	Year of Study	Lecturer(s)
2 nd Cycle	2 nd	Dr Harald Gjermundrød
Mode of Delivery	Work Placement	Co-requisites
Distance learning	N/A	None

Objectives of the Course:

The main objectives of the course are to:

- introduce the principles of design, construction and development of distributed systems along with distributed algorithms, which are necessary to build decentralized digital currency systems.
- cover in detail the different interaction paradigms for distributed systems like interprocess communication, remote invocation, and indirect communication and discuss them in the context of digital currency systems.
- cover in detail distributed algorithms for time, state consistency, coordination, agreement, transaction, and replication
- provide deep knowledge and contrast different middleware paradigms like distributed objects, components based, and peer-to-peer systems
- provide deep knowledge of how digital currencies are using the peer-topeer architecture to achieve their design goal
- explain in detail naming structure and organization in distributed systems
- expose the students to development tools/environments/frameworks to develop distributed frameworks for digital currencies.
- cover in detail how topics of distributed systems are applied for devising a digital currency framework.

Learning Outcomes:

After completion of the course students are expected to be able to:

- describe the principles, design, architecture, organization, algorithms and development of distributed systems, with special attention on systems for decentralized digital currencies
- 2. compare and contrast the various interaction methods (interprocess

- communication, remote invocation, and indirect communication) that are used in distributed systems
- 3. critically assess time, state consistency, coordination, agreement, transaction, and replication algorithms used in distributed systems, such as the distributed ledger in digital currencies
- 4. critically assess different middleware paradigms like distributed objects, components based, and peer-to-peer systems
- 5. critically assess how the decentralized peer-to-peer architecture is applied in the various digital currencies systems
- 6. summarize the naming structure and organization in distributed systems
- 7. demonstrate the ability to select an appropriate distributed algorithm and middleware paradigm that fulfills the design requirements for a general distributed system, with emphasis on a distributed digital currency system
- 8. design and develop a distributed digital currency system based on a description of its required functionality and purpose.

Course Contents:

- 1. Characterization of Distributed Systems
 - a) Examples of distributed systems.
 - b) Trends in distributed systems.
 - c) Focus on resource sharing.
 - d) Challenges like heterogeneity, scalability, failure handling, and security.
 - e) Characterization of distributed frameworks for digital currencies.
- 2. System models
 - a) Physical models.
 - b) Architectural models.
 - c) Fundamental models.
 - d) Applicability of models in digital currencies frameworks.
- 3. Interprocess Communication
 - a) The API for the Internet protocols.
 - b) External data representation and marshaling.
 - c) Multicast communication.
 - d) Request-reply protocols.
 - e) Network virtualization: Overlay networks.
- 4. Indirect communication
 - a) Group communication
 - b) Publish-subscribe systems
 - c) Message queues
 - d) Case study of comparing the various communication patterns used for digital currencies frameworks.
- 5. Distributed objects and components
 - a) Distributed objects
 - b) Case study of a distributed object middleware
 - c) From objects to components
 - d) Case study of a component based middleware
- 6. Peer-to-peer Systems
 - a) Napster and its legacy
 - b) BitCoin compared with Napster as a disruptive technology
 - c) Peer-to-peer middleware
 - d) Routing overlays

- e) Case study of an overlay network and application using digital currency frameworks as example application.
- 7. Name Services
 - a) Name services and the Domain Name System
 - b) Directory services
 - c) X.500 Directory Service.
- 8. Time and Global States
 - a) Clocks, events and process states
 - b) Synchronizing physical clocks
 - c) Logical time and logical clocks
 - d) Global states
 - e) Case study of maintaining a global state using distributed ledgers for digital currencies as example application.
- 9. Coordination and Agreement
 - a) Distributed mutual exclusion
 - b) Elections
 - c) Coordination and agreement in group communication
 - d) Case study of agreement for distributed ledgers for digital currencies.
- 10. Distributed Transactions
 - a) Flat and nested distributed transactions
 - b) Atomic commit protocols
 - c) Distributed deadlocks
 - d) Transaction recovery
 - e) Checkpoints of distributed ledgers
- 11. Replication
 - a) System model and the role of group communication
 - b) Fault-tolerant services
 - c) Gossip based architectures
 - d) Transaction with replicated data
 - e) Case study of resilience of decentralized systems for managing digital currencies.
- 12. Designing Distributed systems
 - a) Case study of all the aspects of a large distributed system using a digital currency as the application domain.

Learning Activities and Teaching Methods:

Lectures, Practical Exercises, and Assignments.

Assessment Methods:

Assignments, Mid-term Exam, Final Exam.

Required Textbooks/Reading:

Authors	Title	Publisher	Year	ISBN
	Distributed Systems:	Addison	2011	978-
J. Dollimore,	Concepts and Design, 5 th	Wesley		0132143011
T. Kindberg,	Edition			
G. Blair				

Recommended Textbooks/Reading:

Andrew S.	Distributed Systems:	Prentice	2006	978-
Tanenbaum	Principles and	Hall		013239227
and Maarten	Paradigms, 2 nd Edition			3
Van Steen	_			
Carlos A.	Programming Distributed	The MIT	2013	978-
Varela	Computing Systems: A	Press		026201898
	Foundational Approach			2

Recommended Articles / Reading List:

- Decker, C. and Wattenhofer, R. (2013) "Information Propagation in the Bitcoin Network" in 13-th IEEE International Conference on Peer-to-Peer Computing (P2P), pp. 1 – 10, 9 – 13 September.
- Szefer, J. and Lee, R.B. (2013) "BitDeposit: Deterring Attacks and Abuses of Cloud Computing Services through Economic Measures" in 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 630 – 635, 13 – 16 May.
- Ian M., Garman C., Green M., and Rubin A.D. (2013) "Zerocoin: Anonymous Distributed E-Cash from Bitcoin" in Proceedings of the IEEE Symposium on Security and Privacy (SP), pp. 397 411, 19 22 February.
- Barber S., Boyen X., Shi E., and Uzun E. (2012) "Bitter to Better —
 How to Make Bitcoin a Better Currency" in Financial Cryptography and
 Data Security, Lecture Notes in Computer Science, Volume 7397, pp.
 399 414.
- Plohmann D. and Gerhards-Padilla E. (2012) "Case Study of the Miner Botnet" in 4th International Conference on Cyber Conflict (CYCon), pp. 345 – 360, 5 – 8 June.
- Laurie B. (2011) "Decentralised Currencies Are Probably Impossible But Let's At Least Make Them Efficient" [Online]. Available: www.links.org/files/decentralised-currencies.pdf, [Mar. 3, 2014].
- Nakamoto S. (2009) "Bitcoin: A Peer-to-Peer Electronic Cash System"
 [Online]. Available: http://www.bitcoin.org/ bitcoin.pdf, [Mar. 3, 2014].